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An algorithm for the dynamic contro! of the number of particles
in a particle-in-cell {PIC), plasma simulation is presented. The algo-
rithm selectively splits and coalesces particles to control the number
of particles in each grid cell. it is designed for multiple-length scale
problems where an adaptive grid can be applied and for PIC simula-
tions on paraliel computers where a constant number of partictes
per cell is useful for computational efficiency. The algorithm pre-
serves the charge assignment at grid points while splitting one
particle into two, or while coalescing two particles intoe one. Errors
in momentum or energy conservation are controlled by a simple, a
prioritest. The accuracy of the algorithm is demonstrated in several
simulations in one dimension, including a collisionless slow-shock,
where an adaptive grid calculation with dynamic number control
gives comparable accuracy to a uniformly zoned calculation without
dynamic control with just 50% of the effort. © 1994 Academic Press, Inc.

1. INTRODUCTEION

Plasma simulation is an important and widely used tool in
understanding complex, nonlinear phenomena such as colli-
sionless shocks [1} and laser plasma interaction [2]. Neverthe-
less, there are constraints on the dynamic range of variables
that can be modeled that severely limit its usefulness. These
constraints become more apparent as one extends simulations to
inhomogeneous plasmas or to multiple-length scale problems.
When there are sheaths or collisionless shocks, there is a need
either to increase the number of mesh points everywhere or 1o
use an adaptive mesh that clusters zones in regions of high
gradients. When the zone sizes vary, there will result large
variations in the number of particles per zone. This variation
may resuit in too few particles to resolve the velocity distribu-
tion in the smallest zones. As difficult problems are addressed
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with greater variations in length scales or in plasma density
than can be accommodated by standard simulation methods, one
needs dynamic control of the number and weight of particles.
(Parker et al. [3] addressed a different aspect of multi-scale
problem, namely the use of different time steps in different
regions of the mesh.)

Dynamic particle control refers to changing the number of
particles representing the plasma during the course of a simula-
tion. Usually, the number of particles in a simulation remains
constant from beginning to end unless there is injection or
absorption at the boundaries. With dynamic control, the parti-
cles may be split or coalesced when more or fewer particles
are required.

Dynamic particle control becomes even more desirable with
the availability of parallel computers. With the prospect of
greater computational power, researchers have begun to simu-
late tokamak experiments in realistic geometry [4] and to model
the interaction of the solar wind with planetary magnetospheres
in two and three dimensions [5]. When calculations on this
scale are done, one must use computer resources efficiently.
That is, the load must be shared equally among the processors
so that there can never occur an interval when one processor
is busy while the rest are idle. To avoid this, a method for
domain decomposition has been proposed [6]. We propose to
go a step further toward dynamic control by providing the
ability to change the number of particles in each cell. so that,
for example, every cell has the same number of particles.

Several schemes for dynamic control have been proposed.
In Monte Carlo studies of the linear transport of neutral particles
in scattering media, e.g., neutron transport in fission reactors
[7]1, particle splitting is useful in maintaining a constant number
flux of particles where there is significant attenuation of the
physical flux. In one-dimensional plasma simulations, Denavit
[8] describes a method for the periodic reconstruction of the
distribution function. The reconstruction involves the simulta-
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neous replacement of all particles. The desired effect is the
reduction of noise and the suppression of instabilities. For in-
compressible fluid flow in two dimensions, Beale and Majda
[9] propose a similar reconstruction for the vortex--blob method.
They seek to reduce roughness and maintain the order of accu-
racy of the solutions over long times. For the simulation of
collisionless shocks, Quest [10] selectively splits particles to
increase the ability to model minority species. By splitting, he
increases the number of particles representing that component
of the plasma that has been accelerated to high energies by a
collisionless shock. Without splitting, there are too few particles
to represent accurately the accelerated particles. With splitting,
there are enough for good statistics.

The approach we present differs from Quest’s in two ways.
The criterion for changing the number of particles in our method
is a comparison with a target number of particles per cell
rather than the number of particles in a portion of the velocity
distribution. Thus, some particles may be split to increase the
number of particles in a cell, while other particles may be
coalesced to reduce the number of particles. In addition, our
method creates new particles with different positions, rather
than different velocities.

The development of the algorithm proceeds through a discus-
sion of the general framework for particle splitting, a discussion
of the special properties of the b-spline, a description of the
method for controlling the number of particles, and concludes
with three numerical tests of the method. The first compares
the original distribution with the distribution that results from
coalescing particles until the number of particles is halved; the
second illustrates the ability to maintain a constant number of
particles when mesh points are clustered to resolve an electro-
static sheath; and the third applies the method to the calculation
of a slow shock.

2. GENERAL FRAMEWORK OF THE DYNAMICAL
CONTROL OF THE NUMBER OF PARTICLES

In a typical particle simulation code, either fluid or kinetic,
a discretization of the spatial variable is introduced. For the
sake of simplicity we consider the one-dimensional case (but
3Din the velocity space). The extension to 2D and 3D problems
is straightforward. In one-dimensional simulations the region
occupied by the system is the interval of the spatial axis x
bounded on left by x; and on right by x,. It is divided into M
cells [x;, x;,,,1; { = 1, ..., M, where x; = x1, Xy, = X,.

The cell width A; = x;,, — x; is a function of the index i
and of time when adaptive grids are used. However, one can
define a natural coordinate £ by mapping each cell in physical
space onto a unit interval in the space of the natural coordinates,
which are independent of time. The cell vertices x; are mapped
into & = i and any point x € [x,, x;,,] is mapped into a value
of fE€ i, i+ 1]

The particle motion in phase space is calculated from New-
ton’s equations. The forces are calculated by solving Maxwell’s
equations for the electromagnetic fields on the spatial grid.
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The solution of these equations requires a knowledge of the
charge, current, density, and pressure of every species present
in the system on the grid. The calculation of these moments
from the particle distribution requires interpolation to transfer
the information from the particles to the grid [11] for which
there are many different techniques. We will focus our attention
on a very general class of interpolation techniques based on
the b-spline [12].

In this approach we can, for example, express the moments
M (where boldface stands for the possible tensor nature of the
moment, as is the case for the pressure) of the particle distribu-
tion of species s at any point x knowing the position £, the
speed u,, and the charge g, of the set of N particles used to
sample the distribution, as

M(¢) = Z g TW)s (€ — &), (1

where T is the generating function for the various moments
and s,(£) is the b-spline function of order I. Different values of
{ give different interpolation schemes characterized by different
widths of the particles. For example, for | = 0 (nearest-grid-
point approximation, or NGP) a given particle contributes only
to the cell center in which it is located, while for I = 1 1t
contributes to two adjacent cells and for I = 2, to three cells
[12]. In general, a particle located in the jth cell affects a
restricted subset U; of neighbour cells. The subset for / = 2 is
U=4—-1ii+1,andforli=1U={-1,ilifi<
LE<it+tpU={4i+1}ifi+3<g =i+ LU ={i}if
£ =1+14

In the following derivations we are interested in replacing a
set of particles located in a given cell by another set. The
replacement set may have a different number, which may be
larger or smaller depending on the target number of particles
per cell, but the new particles should correspond to the same
distribution in velocity as the old particles. It is also required
that the new particles have positive mass and that the fields
the new particles produce be the same as the old. As suggested
in Ref. [13], one can derive a method that preserves the values of
the moments on the grid. In the solution of the Vlasov—-Maxwell
equations, the relevant moments are the charge and current
density p and J, which appear as sources in Maxwell’s equa-
tions. For implicit methods, the pressure tensor, I, may be
required also [13]. (As will become clear, it is necessary to
preserve these moments, but it is not sufficient.)

This approach has the advantage that, from the point of view
of the dynamic equations, the original set of particles and the
new set are equivalent; the same fields will be calculated from
the new set of particles as from the old. However, the subseguent
evolution of the new set of particles may be different from the
old set. This effect does not alter the evolution of the system
immediately, but over longer times alterations in the evolution
may occur. However, from the results of the tests in Section 5
with careful replacement, the correct evolution of the system
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appears to be preserved and the effects of replacing particles
appear to be small. Note that this approach preserved momen-
tum. The forces among the particles of the two sets will be
different, but overall momentum is preserved. The problem can
then be stated as follows.

Given N,; particles of the species s in cell | with masses
m, > 0, velocities u, and positions &, (& = €, = &), a second
set of N.; particles can be generated with masses m, > 0,
velocities w, and positions &, (& = £, 5 £4\) such that, for
Jj € {1, M), it holds that

., ~ N B
&) = 2, apsill& — &) = X aysidlg — &), )
p= p=

N.‘.F N.;.i
J(&) = 2 s — &) = PE gruysi| & — &), 3)

N N

E) = 2} mus(|E — £)) =
2

i

l mp'up'uﬁ'sl(lg::i - §P'|)‘ )

F=

where q,/m, = o, is the charge to mass ratio characteristic of
the species s, and & = § + &.

Equations (2) through (4} are nontrivial when at least one
of s(|& — &) is nonzero. For particles located in cell i, this
Ni.i
limits the range of j to the subset V; = U U;. For { = 1, the
p=1
subset V; depends on the positions of the particles inside the
cell; for particles distributed over the whole cell, it is V; =
{i — 1,4, i + 1}. {Note that the new particles will have different
locations than the old. Thus, this method differs from Quest’s
[10], in which the new particles have the same locations but
different velocities.)

3. SOME PROPERTIES OF THE B-SPLINE
INTERPOLATION

The problem of controlling the number of particies per cell,
can be auacked by looking carefully at the properties of the
b-spline functions used to interpolate between the particles and
the grid.

Consider a single particle located in ceil i with natural coordi-
nate &, (& < & < ). Where S, = 5(j& — &), it holds
that [12]

Zsfpz L.

=

(5)

Further, consider the linear and quadratic b-splines (I = 1, 2).

The set {S;};ey, can be interpreted as a vector § = {S,, =
Sitm-2,p}m=1 0 the three-dimensional space JR* (for { = 1 either
Siniy = 0 or §;_, = 0 depending on the position £, inside the
cell). Equation (5) restricts the vector § to lie in the plane
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FIG. 1. The plane ¥ defined by the equation S, + §; + §; = 1 is shown.
Superimposed are drawn the axes e, and a, defined in Section 3.

defined by solutions to the equation S, + 5, + §; = 1 which
can be mapped easily onto the usual H* space. This simple
mapping allows one to visualize the geometrical properties of
the vector § and to derive some useful properties from which
a simple but very effective scheme for controlling the number
of particles per cell is developed. We need, first, to characterize
the mapping between the plane in the 3D space to the 2D space.
The following result is derived easily.

Prorosition 1. The set V' C P° of vectors 8, having the
property T, S» = |, can be mapped onto the two-dimensional
space M. We choose to define the following mapping §:
{Sntmeis = {ouhi-1: as '

=c + ¥, + V3,

©
where ¢ = (3,5, 0), vi = (=3, 0, +3) and v; = (-3, 1, —%).

Proof. The derivation of Proposition 1 is straightforward.
The set ¥ is a subset of h* whose dimensionality is 2, due to
the relationship Z,L; S.. = 1; it can be regarded as the plane
defined by the equation §; + 5, + §; = 1 of the three-dimen-
sional space. It is therefore possible to map V' onto the usual
R? plane, We choose to map V' by introducing in $i* a frame
of reference with its center at the point ¢ € ¥ that, for ! = 1,
2, can be regarded as the outcome of an interpolation from a
particle centered on the left vertex of the cell. One axis (o) is
chosen parallel to v, i.e., the direction parallel to the segment
intercepted by the plane V' with the coordinate plane (S, §,)
(see Fig. 1). A second axis (&) is chosen to be orthogonal to
the first axis and in the plane V. This axis can be shown to be
directed along v,. The third axis is immaterial to our analysis
and can be chosen freely. Equation (6) follows immediately
from expressing a point 8 € ¥V within the new frame of ref-
erence.

The linear mapping G from the original point 8 to the 2D
vector ¢ is now uniquely defined. The expression for the map-
ping % can be rewritten conveniently as
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FIG. 2. With lincar b-splines, any two points £, and P, lying on different
sides of Py, but on the same side of the triangle, correspond to particles with
positive weight and with the same “‘footprint™ on the grid.

e o
57373 7%
!l o
S, =+ 7
1E 3t (7}
a &
Sy==-=.
T2 008
These equations can be inverted easily to yield
o, = 2(5; + ay/8)
(8)

The set of vectors S resulting from the interpolation of a
single particle is further reduced to a subset of V' by the relation-
ship with the b-splines. Indeed the b-spline interpolation acts
as a nontinear mapping from the one-dimensionat £, space onto
a line in the 3D space. In this context the following result can
be derived.

ProposiTioN 2. The graph of the function S(§,) = {S.(£,} =
sll&amz — EDL UL i + 11 CR >V C Ris a line in K
whose parametric equations are, for 1 = 1,

S = l—l%+§,,—i| 1f§p<§s+uz
! 0 otherwise
L . )]
S;=1-[— &+ il
S;= 1 _Sl_SQ,
and for | = 2,

S;=i-G-§+ iy
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$=(& -2

(1
S| =1]1- S| - Sz;
G maps the graph of S into the line in M?* of equations
a; =2 — |4a — )
(i1)
o) = §_n
for I =1 and
o, = —4af — a))
(12)
24} = §p
fori=12.

Proof. These results easily follow using the analytic expres-
sions for the b-splines and using Eq. (6) for mapping the line
from °V o N2

The result just stated has an important geometrical meaning.
As a particle moves from the left vertex of the cell toward right
the vector 8 moves along the line of Eq. (9) (or Eqs. (10)) on
the plane ¥ C fR3. This line can be visualized much more
easily in R% the evolution of § is mapped by % onto the triangle
(I = 1) of Fig. 2 or the parabola (/ = 2) of Fig. 3. This
simple picture of the evolution of the vector S, representing
the interpolation between particles and grid, allows very simple
reasoning about the control of the number of particles per cell.

Before that, two other results are needed.

ProposITION 3. Given N vectors 8, € V and the corre-
sponding vectors &, € M, linear combinations 8 = 2, a,S,
are mapped by § onto linear combinations (l.c.) & = 2o, if
and only if 2, a, = 1.

a =k

F1G.3. With quadratic b-splines, particles at £, and P, have positive weight
but yield the same ““footprint’’ only as their distance from Py, approaches zero,
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Proof. This result can be understood easily by noting that
if 2,a, + 1then S = 2, a8, &V because 2, §; # 1. On
the other hand, recalling the expression (6) for the mapping
%, we have:

E a,S, = E a,(3,%,0) + 2 a iy + 2 4,00,  (13)

where the need for the constraint on the sum of the a, is
obviously required to map the linear combinations into each
other.

The final goal of these calculations is to be able to compare
different sets of particles; therefore, the contributions from
different particles must be combined. Proposition 3 allows one
to operate on linear combinations in the 2D space as if they
were performed directly on the original vector 8. One must
only take care to respect the condition 2, a, = |.

An important result can be derived concerning the interpola-
tion from two different sets of particles, the first with just one
particle and the second with L particles, where L > 1.

ProposiTIiON 4. For linear b-spline interpolation (I = 1),
given a particle located at &, and any two particles (L =
2) located in the same half of the cell as §,, ie, with
Moaio(Ey — 0 — 8) > 0, but on different sides of &,, i.e., with
Lo (& — €) < 0, we have:

2
S, = 2} &8, ¥j € U,, (14)
=

with

gp - gp‘z]
&> -

= >0,
gp’=2 - §p'=]

81=1_82>0.

15)

Progf.  This result follows from Propositions | through 3.
First we have that if Eq. (14) holds, 2 &, = 1 easily follows
by summing over j € U;. This allows us to use Proposition 3,
From Proposition 2, §;, is mapped onto a point # on the triangle
of Eq. (11) (see Fig. 2). Any two points P, and P, on the same
side of the triangle, where P, lies but on opposite sides of P,
can be linearly combined, with positive factors, to regain P,.
The weights are given by elementary geomietry. These weights,
thanks to Proposition 3, are the ¢, of Eq. (15).

A few comments on Proposition 4 are in order. First, if one
of the new positions is chosen to coincide with the old one,
we get a trivial result, namely the old particle is recovered and
the other particle has zero weight. Second, if the points P, and
P, are on different sides of the triangle, no linear combination
of themn can give any point on the triangle (apart from the trivial
case of P, and P, themselves) and therefore not Py. Third,
L > 2 is allowed, but the weights &, are then not uniquely
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defined. Fourth, the inequalities, Eq. (15), guarantee that the
particles have positive weights.

A final comment concerns the extension of the previous
result to the case [ = 2. The exact extension is indeed impossible
as any linear combination of points on the parabola of Eq. (12},
with positive factors, results in a point inside the polygon %
defined by these points. This polygon is inscribed inside the
parabola and none of the points on the parabola can be inside
% (apart from the vertices of the polygon themselves). There-
fore we cannot reconstruct a point £, with other points different
from Py. However, if two points P, and P, are chosen close to
P,, the parabola can be approximated linearly; and the results
of Proposition 4 still hold (see Fig. 3).

However, the results for / = 1 do extend exactly to the case
! = 0, because in this case U; reduces to cell { alone, and Egq.
(14) reduces to 1 = Zp' £y, since §;, = 1. Any set of L particles
lying in cell ¢ trivially satisfy the condition, provided that for
each set, the weights sum to 1.

4. A METHOD TO CONTROL THE NUMBER
OF PARTICLES

Proposition 4 derived in Section 3 provides the basis for a
simple technique for controlling the number of particles per
cell. In the following we detail the application of the results
derived in Section 3 to splitting and coalescing particles. This
ability can be used successfully in kinetic PIC simulations to
reduce the computational burden required in many important
physical situations.

4.1. Splitting

The result of Proposition 4 can be used immediately to con-
struct an algorithm to split any given particle into two new
particles. The algorithm is: Replace one particle with position
£,. velocity w,, charge q,, and mass m,, by L = 2 new particles
with positions £, velocities u, = u,, charges q, = &,q,, and

masses my = gym,, where
N
fp’:Z - fp'=l

are the weights as derived in Proposition 4.

Note that Eq. (14) of Proposition 4 assures that this replace-
ment preserves the contributions of particle p to all moments
of the distribution with linear interpolation,

E;‘ 4,8, T(w,) = q,T(w,)S,,. (17

and that the particles have positive mass. This result is valid
even if p and J are assigned to different grids. Thus, one can
use this algorithm to control the number of particles in codes
that use staggered grids, such as CELEST1D {15].
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Moreover, because the new particles have different positions
in space, their evolution in time will be different even though
their velocities are equal. This property of the splitting algo-
nthm guarantees that the increase in the number of particles
results in a real increase in the capability of describing a feature
of the system and in a reduction in the level of noise in the
results of the simulation. Further, it is argued that the velocity
distribution varies very little over the distance a particle can
travel in a time step, typicaliy a cell. Thus, separating the
particles in space by a fraction of a cell width introduces little
OF NO EITor, :

This algorithm, which is based on Proposition 4, is valid
only when the interpolation scheme uses NGP ({ = 0) or linear
({ = 1) b-gplines. In principle, it cannot be used for the PIC
codes in which interpolation schemes with / = 2 are used.
However, as previously remarked, the results of Proposition 4
can be considered a good approximation for [ = 2, especially
when the positions of the two new particles are sufficiently
close. We suggest choosing two new positions by the rule:

(e if & <4,

§P’='”{%(§;—%)+% if& =3, 9
&+¥E—¢&) ifE <,

o 19

&= {§;+§(1—§f,) if § =3, )

where £ = £, — i, that is to say in the midpoints of the two
segments O, — Py and P, — O, if § <% or O, — Py and
Py — Osif &, = % (see Fig. 2).

Note that this rule causes particles very close to the center
of the cell to be replaced by two new particles whose distance
from the original particle are unequal. This gives rise to two
new particles with very different weights. To maintain roughly
uniform weights, we avoid splitting particles near the center
of the cell.

We have also generated new particles with the positions
£y = & T & where §is a fixed displacement whose value can
be, for example, assigned to § = /N, where ¥ is the number
of particles per cell. In this case the two new particles have
the same weight. However particles with §, — i < 8(i.e, close
to the left boundary of the celly or &, — i > 1 — J (i.e, close
to the right boundary) cannot be split.

The results reported in Section 5 are obtained with
CELESTID, which uses b-splines with | = 0, 1, 2 simultane-
ously for different moments {15]. The results show that both
these schemes for generating the new particles can be very
satisfactory and that the approximation underlying the applica-
tion of the algorithm for [ = 2 is accurate.

Note finally that it would be possible to split one particle
into more than two particles, L > 2, but in this case the weight
of the new particles is not uniquely determined by Proposition
4. If more than one new particle is needed, one should split
several different initial particles into two rather than one particle
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into more than two. The former avoids the creation of particles
with charges much smaller than the charge of the original
particle.

4.2. Coalescence

Even though the splitting technique can be inverted exactly,
in principle, to obtain a method to coalesce L = 2 particles
into one, it is never possible to find two particles in a given
cell with exactly the same velocity. Still this technique can be
used, at least approximately, if one coalesces only those parti-
cles with similar velocities.

With this approximation, we can use the results given in
Proposition 4 to coalesce two particles (labeled p = 1, 2) with
positions §,, velocities u,, charges g,, and masses m, inte one
(labeled new) with charge q,.. = g, + ¢z, mass m,,, = m +
my, and position &ugue. = £1G; + &:q;. This last result follows
from Proposition 4 using Eq. (15) with &, = g /g, and &, =
G2/ G -

The new velocity can be defined to preserve each component
of the particle momentum

f]]“l + qZ“Z = qnewuncw (20)
or to preserve the energies of each degree of freedom of parti-
cle motion,

q1 uzl.a + qz“%,a = anwu?ww,a (21)
but not both simultaneously (« = 1, 2, 3 indicates the three
components of the velocity vector). However the results of
several tests (see Section 5) shows very clearly that either
choice, Eq. (20) or Eq. (21), gives acceptable results. In practice
when [u, — wy| < |u | + |uy| (i.e., the velocities are similar)
the fulfillment of any one of Egs. (20) and (21) results in a
rather good approximation to the other.

Note that the extension of this algorithm to { = 2 is once
again only approximate. This technique is indeed less precise
than the splitting. The error in the approximation underlying
the extension of Proposition 4 to / = 2 is added to the averaging
of the velocities. Averaging alters the particle distribution.
However, as shown in the results of Section 5 if the particles
are chosen to be close in the phase-space (and in particular in
the velocity space) the degradation in the description of the
particle distribution is low.

5. RESULTS

The algorithm for controlling the number of particies per
cell developed in the previous Section has been extensively
tested in several applications using an implicit, adaptive-grid,
electromagnetic code, CELESTID, for plasma simulation in
one dimension [15].

The tests probe two aspects of the algorithm. First, we show
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that the technique to control the number of particles does not
alter significantly the particle distribution function and the evo-
lution of the system; no nonphysical processes are introduced
and the correct evolution is conserved. Second, we show clearly
in two relevant physical situations that the adoption of an adap-
tive grid and the control of the number of particles can indeed
greatly improve the performance of PIC simulation codes by
significantly reducing the CPU time needed to obtain the re-
quired results.

5.1. Test 1. Particle Distribution

Before trying to apply the control of the number of particles
per cell in a kinetic code, it is important to check how, given
a set of particles sampled from a known distribution function,
particle coalescence alters the original distribution function.
We test only coalescence, because splitting does not change
the particle distribution at all since the new and the old particles
share the same velocity. To resemble as closely as possible
typical PIC simulations, good statistics of the particle distribu-
tion are achieved by generating a system of 200 cells with 64
particles each. The particle distribution function is obtained by
superimposing two warm beams with Maxwellian distributions.
The beams are given equal temperatures corresponding to a
Debye length, Ap. = 0.4c/w,, and with beam velocities,
ute = —0.5 and u/c = 0.5. We limit our attention here to the
x-component, i, of the velocity.

By repeatedly coalescing particles in each cell, we reduce
the number of particles from 64 per cell to 32. The pairs of
particles to be coalesced are chosen to have a difference between
the two velocities,

u g + W
¢+ g2

wh =

2 2 12
L= (%_4) 22)
TG

(the notation of Section 4.2 is used, and the index x is dropped)
as clase as possible to a given value:

i _ @
_ o —u?]

200 = Erarger - (23)

Note that the definition (23) of the distance in the velocity
space is more useful than the natural distance |u, — u,| as it
is directly related to the violation of the conservation of energy
and momentum. Indeed u'" is the velocity of the new particle
as required by conservation of momentum and u® by conserva-
tion of energy; the difference between the two is, therefore,
related to the inability to satisfy both the conservation relations.

The aim is to assess how large an error is introduced by the
difference in velocity between the coalesced particles. This goal
is achieved by applying the x? test (with 30 bins) and the
Kolmogorov-Smirnov (K-S} [14] test to the particles before
and after coalescence.

581/115/1-15
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TABLE 1

£largu Egv Emax K-8 XZ
Before coalescence — — 1% 95%
107 9960 x {07 1.060 x 107! 100% 95%

1 1.000 1.023 100% 94%

3 3.000 3.032 100% 91%

5 4998 5.048 96% 89%

10 10.000 10.124 57% 32%

Table T reports the results of the tests as a function of the
assigned £..4.. AS a matter of fact the two particles coalesced
in each cell do not have exactly a value of € equal {0 &,p.;
therefore, Table I reports the maximum and average value of
& among the cells.

The results show that when the particles are close in velocity,
the degradation of the information is quite low; and when the
particles are not close in velocity, the distribution of the particles
is considerably altered and the probability of agreement with
the original distribution, as evaluated by the y* and K-S tests,
is low.

It must be stressed that the results of this test show the
reliability of the coalescing method for low values of g, but
they cannot be used to find a threshold value of £. This is due
to the intrinsic limitation of the tests performed. They only
give a statistical answer regarding the agreement between the
two distributions. Further, the results of this test are very noisy.
This is especially true for the y* test where the results depend
also on how the particles are grouped into bins.

A limit value for ¢ can only be found in relation to the
specific problem at hand. Indeed different limit valves of &
have to be expected depending on the structure of the particle
distribution and on the importance of the zones where the
particles are coalesced. We return to this problem below.

Note, finally, that, as anticipated in Section 3, the results in
Table 1 are not affected by the procedure used to average the
old velaocities to generate the velocity of the new particle (Eq.
(20) or Eq. (21)). This is a strong hint that the approximation
underlying the coalescing method is indeed extremely good.

5.2. Test 2: Sheath Problem

The actual benefits that can be gained by the control of the
number of particles are shown in problems where localized
phenomena are present. Two examples are the electrostatic
sheath problem and the electromagnetic slow-shock results
that follow.

When a Maxwellian plasma of finite size is surrounded by
perfectly conducting walls at zero potential, the different mobil-
ity of electrons and ions gives rise to a potential barrier which
slows the flow of electrons toward the walis [16]. The presence
of thin sheath regions with strong gradients of the electrostatic
potential suggests that the use of a grid with finer spacing in
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the sheaths and coarser spacing in the bulk of the plasma can
be very effective.

We simulate a one-dimensional plasma composed by ions
and electrons with mass ratio m;/m, = 100. Initially the electron
temperature corresponds o Ap, = 0.L¢/w,,, and the ratio of the
ion and electron temperatures is given by Ap/Ap = 1.0. No
magnetic field is present, and the electrostatic potential is con-
strained to be 0 at the boundary of the system. An open boundary
condition is assumed for the particles so that, when a particle
hits the wall, it is simply removed from the simulation. Note
that no steady state can be reached.

The simulation box is L = 4c/w,, wide, and the evolution
is followed for w,s = 20. As the simulation proceeds, we
adapt the grid. We generate the adaptive grid from an elliptic
diffusion-like equation suggested by Winslow [19],

d (dxn-H 24

d_gw dg ) = W‘T().’”H — x,
where x" {x"*') is the old (new) grid as a function of the natural
coordinate £ and T is a time constant controliing the delay in
the response of the grid to changes in the weight function w.
The weight w in this problem is related to the x-component of
the electric field E . If the computed electric field were used
directly as a weight function, the noise usually present in PIC
simulations would result in an equally noisy grid. For this
reason the weight w is related to E, by a smoothing operator [17],

dw w

_w_ B
d(xn)Z Ll

L’

(25)

where L is the coupling distance over which the noise is effec-
tively smoothed away. A simpie Fourier analysis shows that
Eq. (25) acts effectively as a low-pass filter to damp the high
frequency noise. The electric field from which w is calculated
is averaged over several time steps to reduce the noise further.

The control of the number of particles per cell adopts Eqgs.
(18)—(19) as a rule for generating the new positions when a
particle is split and with the average velocity defined by Eq.
{(21) to preserve energy. In each time step the splitting algorithm
acts in those cells where the number of particles drops below the
initial value by more than one particle. Similarly the coalescing
routine acts where the number of particles exceeds the target
value by one. Note that the number of particles in the cell j,
N, is defined as

N =2 sE ~ ED, (26)
r

where £; is the center of the jth cell. With this definition ¥, is
a real number, and a fractional number of particles per cell
are present.

The particles to be coalesced in a given cell are chosen to
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be the closest in velocity among the particles in the cell. How-
ever, there appears to be no need to put a threshold value for
the ditference £ defined in Eq. (23) in this calculation.

In the following, the results of four different runs are reported
to give a complete view of the advantages that can be achieved
by the use of an adaptive grid with a control of the number
of particles.

Run a is a reference case with a very fine grid (1000 cells)
and with many particles per cell {128) obtained without adapting
the grid or controlling the number of particles per cell. In Run
b the adaptive grid is used with the control of the number of
particles described in the previous sections. A much smaller
number of particles per cell is used {16} on a much coarser
grid (80 cells). Run ¢ is similar to Run b, but an adaptive grid
is used wihtout controlling the number of particles so that the
number of particles per cell will change quite abruptly from
cell to cell and tme step to time step. Finally, Run d is a
standard run without an adaptive grid or control of the number
of particles, but with the same number of particles and cells
as in Runs b and c.

Let us start with a comparison of the spatial profile of the
electron potential energy at the end of the simulation as shown
in Fig. 4. 1t is clear that Run b is the closest to the reference
results (Run a) both in the general shape of the potential, and
in the actual numerical value.

Even more stringent conclusions can be drawn by comparing
the velocity distribution of the ions exiting the system (Fig. 5).
The poor statistics of the particle distribution are particularly
evident in Run ¢, where an adaptive grid is used without control-
ling the number of particles.

5.3, Test 3: Slow Shock

The simulation of a collisionless shock is a nontrivial test
of the algorithm for dynamic control. There is considerable
nonuniformity of the gradient length scales, and an adaptive
grid can give increased resolution without increase in the com-
putational effort, but only if the number of particles per cell is
controlled. However, the distribution in velocity is very far
from equilibrinvm, and preserving the first and second moments
is probably insufficient to maintain the accuracy of the calcula-
tion. Thus, dynamic control must avoid introducing errors in
the distribution. In fact, the dynamic control algorithm assumes
no knowledge of the plasma distribution, and it contains a
control parameter, &, defined by Eq. (23) to control the error
that is made when coalescing particles. This parameter can be
made as small as one likes, even zero, so that no error is
made, but at the cost of reducing the degree of control of the
particle number.

In the slow-shock calculation below, a flowing, magnetized
plasma is reflected by a stationary piston where the component
of the magnetic field perpendicular to the normal piston is set
to zero, consistent with a switch-off slow shock [8]. The initial
values for the plasma state variables and fields are set according
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FIG. 4. The profile of the potential for the calculation of an electrostatic sheath is shown for (a) a reference caiculation with 1000 zones and 128 particles
per ¢ell: (b) 2 calculation with an adaptive grid and dynamic particle control with 80 zones and 16 particles per cell; (c) a calculation with an adaptive grid
as in (b} but without dynamic control; and (d) a calculation with a fixed grid as in (a), but with 80 zones and 16 particles per cell as in (b} and (c). Only (b)
compares with (a) in the value of the potential drop across the sheath indicating that the particle flux through the sheaths is calculated inaccurately in (c)

and (d),

to the Rankine—Hugoniot conditions. In the case below, initially
the ratios of the electron and ion pressures to the upstream
magnetic field are, 8, = B; = 0.01. The ratio of ion to electron
mass is my/m, = 23, the shock normal angle with respect to
the magnetic field is ¢ = 75° and the ratio of the upstream
Alfvén speed to the speed of light is Vi/c = o/, = 001,
The simulation box length is L = 2000c¢/w,;, and the shock is
followed vntil w,t = 5000.

For reference, the results of two calculations on uniform
grids are shown. The calculations are performed with 200 cells
and spacing 1.0c/w,,;, and with 400 cells and spacing 0.3¢/w,;.
In Fig. 6, a stack plot of 8, as a function of position is drawn
at 50 equally spaced intervals between t = 0 and w,t = 5000.
In Fig. 7, a hodogram of B, as a function of B, is plotted at
@t = 5000. The shock front, Fig. 6, coincides with the abrupt
change in the magnetic field. The trailing magnetic wave
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(TMW) behind the shock is a monochromatic, circularly polar-
ized wave whose characteristic signature is the spiral trace in
Fig. 7. In both runs, the shock speed is the same, but the TMW
wavelength is one-half as large with 400 cells as with 200.
The wavelength is sensitive, evidently, to the cell spacing. To
demonstrate convergence, eveit smaller spacing is required than
that given by the 400 cell mesh.

To increase resolution, adaptive grids are generated using

Eq. (24), but with a prescribed weight function to give finer
gridding in the region of the shock. The weight evolves in time
to follow the shock, which progresses at a known, steady speed,

and is given by
x— xr) N
Sﬂ .

w = 1 + tanh ( 2n
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In the simulations, L = 30 c/w, and x. varies linearly in
time from x, = 120 c/w, to x, = 60 ¢/w,. The valoe of o
varies throughout the calculation either to keep the width of
the largest cell constant and equal to a prescribed value as in
the 400-cell calculation below, or to keep the smallest cell
spacing constant and equal to a prescribed value as in the 260-
cell calculation below. For the grid generated by the weight in
Eq. (27), the largest cel! is the leftmost cell. The variation in
cell size for grids with 400 and 260 celis are shown in Figs.
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8a and b. The 400-cell adaptive grid has a grid spacing in the
shock region approximately equal to .25 c/w,; at the end of
the calcuiation, Fig. 8a, double the resolution obtained with a
uniform grid and 400 cells. The 260-zone calculation has a
grid spacing of 0.5 ¢fw,; in the shock region, Fig. 8b. Note the
size of the largest zone in Fig. 8b. The ratio of the largest to
the smallest zone is nearly 50!

As noted above, one must be more careful to preserve infor-
mation on the particle distribution when coalescing particles

FIG. 7. The hodograms corresponding to Fig. 6 are shown. At the upstream boundary, B = (0., 0., 0.01). At the downstream boundary, B = 0. With

increased resolution, the wavelength is decreased.
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in the slow shock calculation than in previous cases. The effect
of coalescence is here more subtle than before, because in the
shock problem the mass density increases through the shock.
Therefore, the number of particles in this region is increased
by the combined effect of splitting particles and by physical
compression, and the number of particles per cell will rise
above the threshold, triggering a coalescence that can introduce
errors in the most interesting zones. To reduce errors, the control
parameter g, defined by Eq. (23), is set to a small value, and
a pair of particles to be coalesced is required to be within one-
half the grid spacing. In addition, the tolerance in the maximum
number of particles is increased so that the number can exceed
the target value by 50% before coalescence begins. If the num-
ber falls below the target value, particles are split, with new
positions chosen according to the rule & = £ * LIN,.

With an adaptive grid and dynamic control in the 400-cell
case, the total number of particles increases rapidly at first, and
much more slowly later, Fig. 9a. There are increases in a uni-
form grid calculation without dynamic control, because parti-
cles are injected and there is a density increase through the
shock. The relative increase with 200 cells and a uniform grid,
Fig. 9b, is nearly as large as in Fig, 9a; but the rate of increase
is uniform throughout the calculation. The number of particles
per cell, Fig. 10a, is nearly as constant as in a uniform grid
case for x > 40 c/w,;, even though the cell spacing varies. It
appears that dynamic control is successful in maintaining a
constant number of particles per cell in a nonuniform mesh.
However, the control appears to fail in the left-hand zones,
where the number of particles in the leftmost cell climbs to
3800, almost 10 times as many as in the zones to the right.
The principal reason is the rapid growth in the largest zone in

the first few cycles of the computation. The grid is uniform
imitially, and the nonuniform grid is turned on at + = 0. This
causes the number of particles in the leftmost cell to increase
rapidly. (The cells to the right decrease in size, and the dynamic
control responds by splitting particles, which causes the total
number of particles to increase.} The coalescence routine in
this calculation is limited to coalescing at most one pair of
particles each time step, and this is not sufficient to reduce the
number of particles in the largest zones to the target number.
An obvious cure for this problem is to generate the particles
initially on a nonuniform grid. Then the large initial increase
in the number would be avoided. This is the preferable solution,
because it is much less costly.

With the adaptive gnid and dynamic control, the resolution
in the shock region is doubled without increasing the number
of cells or the number of particles. Figures 11 and 12 display
acomparison between calculations with 400- and 260-cell adap-
tive grids. In Fig. 11, a stack plot of B, as a function of position
is drawn at 50 equally spaced intervals between ¢+ = ( and
w.t = 5000. In Fig. 12, a hodogram of B, as a function of B,
1s plotted at w,t = 5000. As above, the shock front, Fig. 11,
coincides with the abrupt change in the magnetic field, and the
TMW behind the shock is a monochromatic, circularly polar-
ized wave whose characteristic signature is the spiral trace in
Fig. 12. In both runs, the shock speed is the same, and the
TMW is very similar.

Consider first the 400-cell adaptive grid calculation, Figs,
11a and 12a, compared with the 400-cell uniform grid calcula-
tion, Figs. 6a and 7a. There is one significant difference between
the two runs. Upstream from the shock, the adaptive grid calcu-
lation with 400 cells is significantly more noisy than the uniform
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grid case. Especially in Fig. 11a, where waves grow and then
disappear, there are upstream waves that seem to have no con-
nection to the shock. One clue to their origin is given by the
ratio of the Debye length to the cell spacing, Fig. 8a, which
varies from Ap/Ax = 2.8 X 107 with a cell spacing of 0.25
clwy, to Ap/Ax = 2.4 X 107 with a cell spacing of 3.0 c/w,.
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Both values are small enough that the simulation should be
unstable to the finite-grid instability. One author shows that for
ApdAx < 0.3, the finite-grid instability should occur [20]. Its
absence may be explained by the reduction in the growth rate
of the instability with implicit differencing and higher order
interpolation [21, 22]. However, when o is decreased so that
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the largest zone is larger than 3.0 c/w,,, the threshold even for
the implicit calculation is crossed and a very strong instabil-
ity occurs.

This serious constraint on the adaptive grid can be made less
stringent using a modification of a technique suggested by Chen
et al. [23]. The growth rate of the finite-grid instability is
reduced by *‘jiggling’’ the mesh [24]. With jiggling and an
adaptive grid, dynamic control, and 260 cells, the results, Figs.
11b and 12b, are virtually identical with those for a 400-cell
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Stack plots of B, for (a) a 400-celt and {b) a 260-cell adaptive gnd are shown.

uniform grid, Figs 8a and 9a, and nearly as good as for a 400-
cell adaptive grid. The degree to which the grid is jiggled, ie.,
given a random displacement each time step, can be seen Fig.
8b. The cell-to-cell variation in cell spacing is relatively small.

Finally, the relative change in the total number of particles
is small in Fig. 9a, but the number of particles in the largest
zone is astounding, Fig. 10a. Yet, there is not a correspondingly
large increase in the total number of particles. The reason may
be found in the data in Table II, where the variation in the size

D12 T

01 0 ] 1 1 1 'y 1 2 1 L 1 1 1 l- 1 i L A 1

-010 -008 -006 -004 -002 O 010

FIG. 12. Hodograms corresponding to.Fig. 11 are plotted.



DYNAMIC CONTROL OF THE NUMBER OF PARTICLES

TABLE I1
Time (' Al N NIAx
1000 1.6 630 394
2000 22 760 345
3600 kN 1150 370
4000 17.0 5000 294
5060 24.0 706 321

of the largest cell and the number of particles in that cell are
listed. Obviously, the coalescence routine is not keeping up
with the increase in the size of the largest zone late in the
calculation. The number density drops but not rapidly enough
to keep the number per cell constant. Perhaps a change to the
coalescence routine to allow more than one pair of particles
per time step to be coalesced would be useful in this case to
give greater control of the particle number, but it is probably
not a good idea to allow a cell to grow so rapidly.

6. CONCLUSIONS

A selective algorithim for splitting and coalescing particles
has been presented. The algorithm allows the number of parti-
cles per cell to be controlled dynamically and should be espe-
cially useful when used with an adaptive grid or to maintain a
level load for parallel computing.

The algorithm is approximate for the coalescence of particles,
but an error tolerance can be maintained by a simple check. In
cases where there is a significant deviation from local thermody-
namic equilibrium, as in the slow-shock, the error tolerance
must be strict. With less strict tolerances, the accuracy of the
slow-shock calculations is decreased significantly.

The advantage of the algorithm presented here, besides its
selectivity, is that it can be applied without knowledge of the
specific distribution, It is not necessary, for example, to charac-
terize the distribution by the computation of its velocity mo-
ments. Rather, from a very general consideration of the interpo-
lation to the grid and a test of the accuracy of the preservation
of momentum and energy, there results a simple test to deter-
mine when it is possible to coalesce and which pair of particles
should be coalesced. Other reasonable considerations, such as
when one should relax the requirement that there should be an
equal number of particles per cell or when one should require
that particle weights not be too disparate, are seen to work even
in complex problems like the slow shock.

Finally, the real value of this algorithm will probably be
found in the increased range of problems to which plasma
simulation can be applied through its use. For its potential to
be realized fully, the algorithm must be extended to two or
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three dimensions, and it must be proven in a wide range of
problems. Nevertheless, the gains in speed and accuracy that
have been demonstrated in one dimension indicate that this is
a fruitful direction to follow.
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